

Current use of satellite data in the Met Office Global NWP model

Fiona Hilton

Nigel Atkinson, William Bell, James Cameron, Brett Candy, Andrew Collard (now at ECMWF), Stephen English, Mary Forsythe

GLOBAL MODEL ONLY!

Outline

- Major changes to satellite data assimilation since last ITSC
 - 4D-Var
 - Use of EOS Aqua data (AIRS, AMSU, MODIS winds)
 - FARS
 - RTTOV 7
 - More ATOVS data over high land
 - No longer assimilating HIRS data for technical reasons
- Comment on late ATOVS data
- Planned improvements for the coming year
 - System changes
 - New data sources

MetOp

Changes to Satellite Data Assimilation

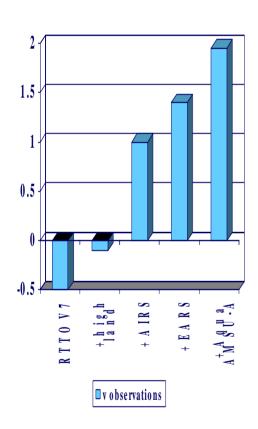
4D-Var Implementation

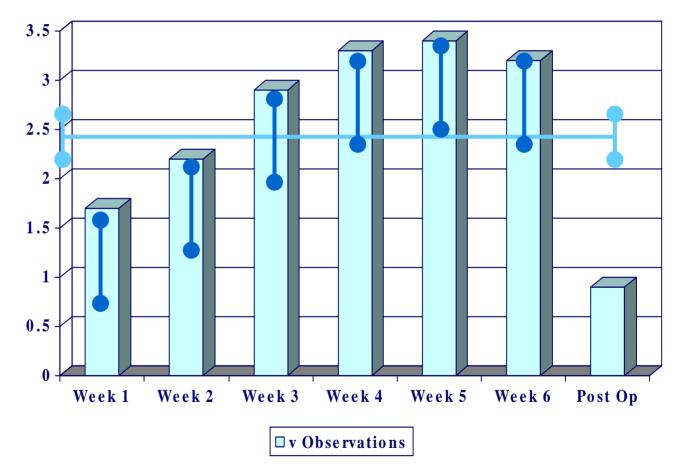
- Data Assimilation algorithm changed from 3D-Var to 4D-Var on 5th October 2004: ONLY change was in algorithm → clean comparison
- The global model is non-hydrostatic, with a finite difference lat-long grid, resolution N216 (~60km), with 38 levels (hybrid in height) and model top at 40km.
- The operational suite contains 4 update assimilation cycles for 6-hour data windows, with 2 main 6-day forecasts run daily from 00Z and 12Z.
- Inner loops with linear Perturbation Forecast (PF) model as opposed to full tangent linear.
- Non-linear updates every 10th iteration.
- Timeliness is critical: the main forecasts have a data cut-off at T+2 hours; and T+7 hours for update runs.

4D-Var v 3D-Var performance

- Very significant improvements in NWP index (basket of scores):
 - +2.57 vs Observations;
 - +1.14 vs Analyses
- Biggest differences in winter storm tracks
- Fewer 'busts'
- Signal from upper troposphere ATOVS
- Fit of observations to background improved

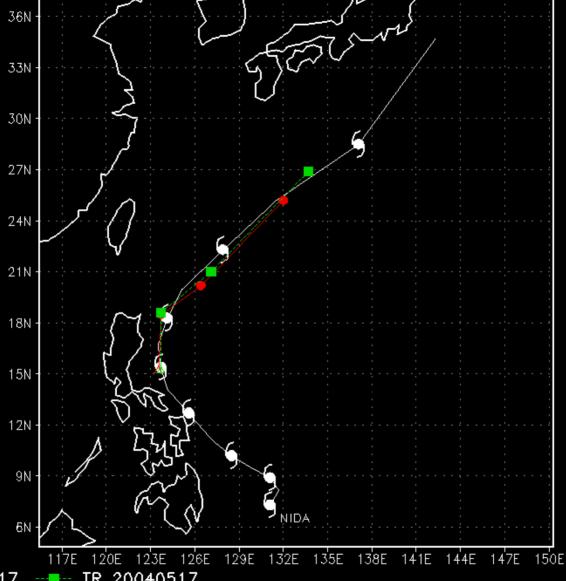
May 2004 Upgrade to Satellite Data Assimilation




- Package of changes including
 - Use of AIRS data
 - Use of EOS Aqua AMSU data
 - EARS data included in assimilation
 - More ATOVS data over high land
 - RTTOV 7 for ATOVS
- Impact expected overall...
 - ...on the basis of component tests +2.2

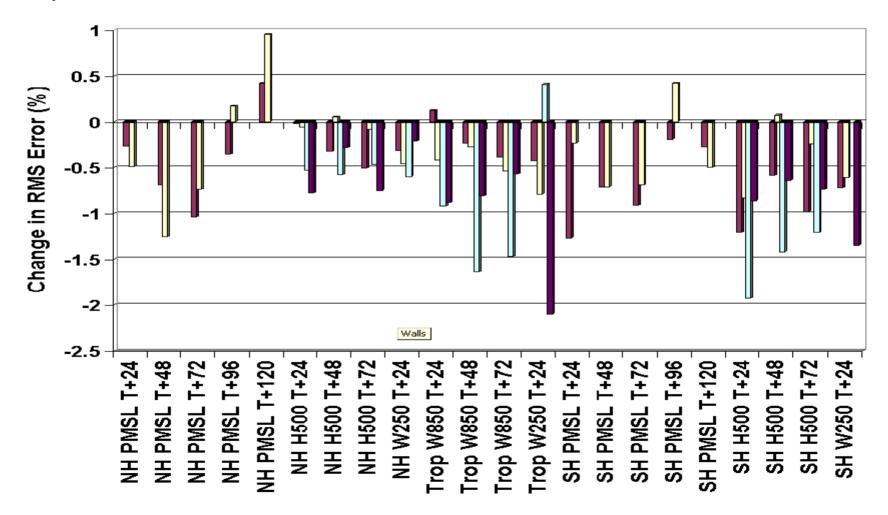
May 2004 Upgrade:

Package Trial Verification – weighted global score



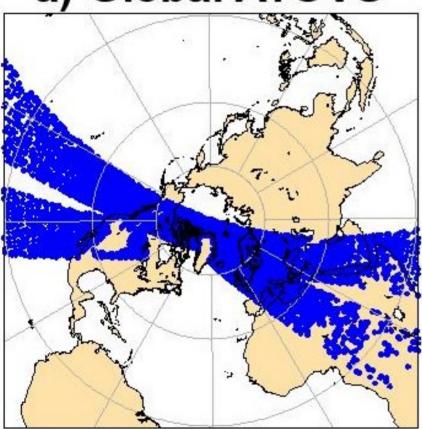
May 2004 Upgrade: Tropical Cyclone Verification

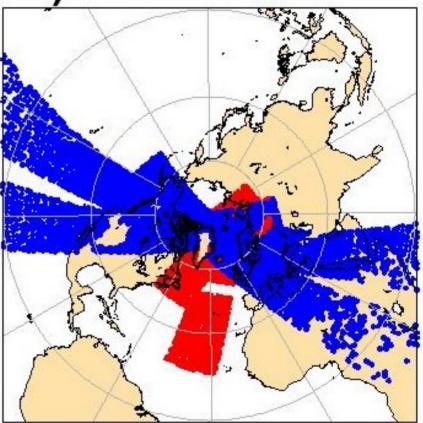
- We found major positive impact
 - positions 10% better, intensity increased, picked up more quickly and developed more rapidly (well before TC bogus kicks in).
- First TC post upgrade was superbly forecast (again well analysed before TC bogus).
- Combined with ECMWF experience (step improvement when AIRS and Aqua AMSU-A went in) we can say with reasonable confidence that AIRS has an important impact on TC forecasts.


CN 20040517 --- TR 20040517 KEY to FORECAST TRACKS

(Triangles denote analysed positions)

AIRS Impact – See poster by Cameron et al.

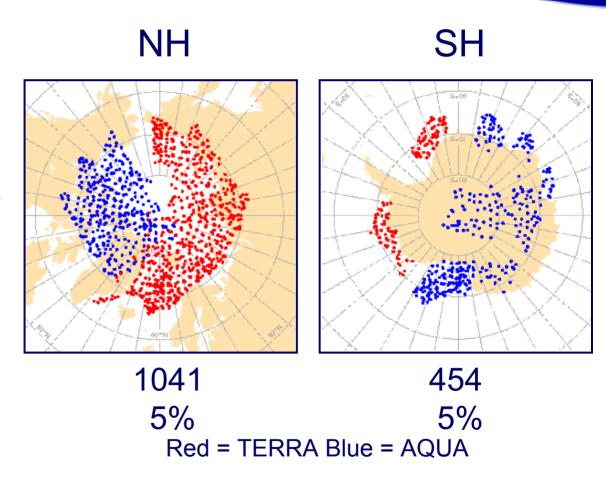

Impact of AIRS trial: +0.4/0.5 on NWP Index


Extra ATOVS data from EARS

a) Global ATOVS

b) Global & EARS

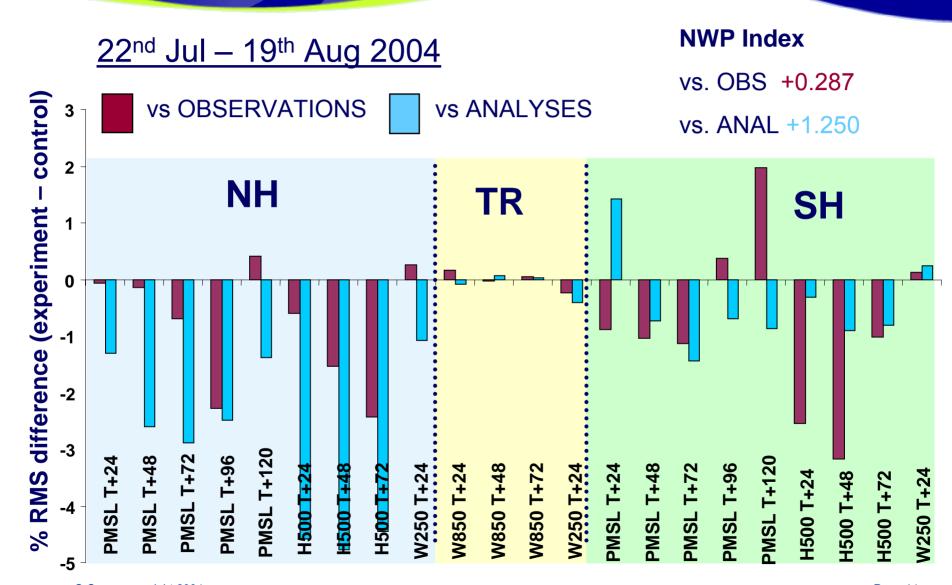
Use of MODIS Data


Extract all NESDIS
MODIS winds valid from
9z – 15z

1. Blacklisting

- All winds below 400 hPa over Greenland and Antarctica
- WV and CSWV below 600 hPa everywhere
- IR below 600 hPa over land and sea ice

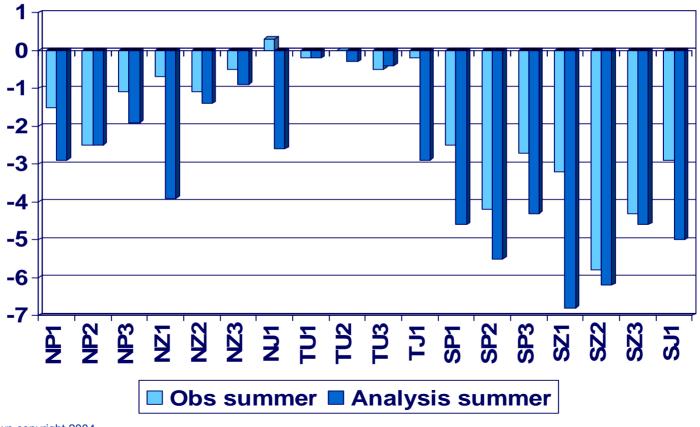
2. Thinning


- one wind per 200 km x 200 km x 100 hPa box.
- 3. Background check

Only use in update runs due to data timeliness issues

MODIS Impact

Summary of Satellite Data Usage (GLOBAL Model!)


	Last Conference	This Conference
ATOVS	NOAA-15 AMSU (4-10,18,20) NOAA-16 HIRS (4-8,10-12,15), AMSU (4-8,10,18-20) NOAA-17 HIRS (4-8,10-12,15), AMSU (4-6, 8-10,18-20)	NOAA-15 AMSU (4-10,18,20) NOAA-16 AMSU (4-8,10, 18-20) EOS Aqua AMSU-A (4-6,8-10)
SSM/I	F13 and F15 windspeed	F13 and F15 windspeed
AIRS		EOS Aqua subset of 324 channels; clear sea only
MODIS		EOS Aqua and EOS Terra

Timeliness of ATOVS Data

Impact of Late ATOVS Observations

As with MODIS winds, we would expect increased benefit from assimilation of ATOVS observations if data were more timely

Planned Improvements for the Coming Year

System Changes

- Model Resolution Improvements by end of 2005
 - 40km horizontal resolution
 - 50 vertical levels
- 4D-Var background error covariance tuning
- Improved observation selection in 4D-Var
- Upgrade ATOVS processing to RTTOV8

Satellite Data Changes

- NOAA-18
 - Assimilation ASAP instead of Aqua/N16 once monitoring stable
 - Priority of N18 v N16
- SSMIS (See poster by Bell et al.)
 - Obs need correction and QC before 1D-Var
 - Trialling of QC'd radiances to begin this summer
- Alternative AIRS datasets
 - Warmest FOV

Met Op Plans

METOP Implementation Plans for ATOVS and IASI

- We intend to process ATOVS data separately as HIRS-1d
- Differences between IASI and current ATOVS/AIRS processing:
 - We will not store all the data and will subset obs/channels before 1D-Var.
 - Aim to store PCS and use reconstructed radiances ASAP.
 - Data stored will already be subject to gross QC and cloud tests.
- Future directions include:
 - Exploring options for less conservative use of IASI data, e.g.:
 - Using cloudy data
 - Assimilating as principal components.

Summary

- Major changes since last conference
 - 4D-Var Assimilation
 - Use of EOS Aqua data
 - Use of EARS data
 - RTTOV 7
- Coming changes
 - Higher resolution model
 - Use of NOAA-18, SSMIS
 - RTTOV 8
- Preparing for METOP
- Need Timely Data!

Any Questions?